Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2017): 20232721, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378155

RESUMO

Sabotaging milkweed by monarch caterpillars (Danaus plexippus) is a famous textbook example of disarming plant defence. By severing leaf veins, monarchs are thought to prevent the flow of toxic latex to their feeding site. Here, we show that sabotaging by monarch caterpillars is not only an avoidance strategy. While young caterpillars appear to avoid latex, late-instar caterpillars actively ingest exuding latex, presumably to increase sequestration of cardenolides used for defence against predators. Comparisons with caterpillars of the related but non-sequestering common crow butterfly (Euploea core) revealed three lines of evidence supporting our hypothesis. First, monarch caterpillars sabotage inconsistently and therefore the behaviour is not obligatory to feed on milkweed, whereas sabotaging precedes each feeding event in Euploea caterpillars. Second, monarch caterpillars shift their behaviour from latex avoidance in younger to eager drinking in later stages, whereas Euploea caterpillars consistently avoid latex and spit it out during sabotaging. Third, monarchs reared on detached leaves without latex sequestered more cardenolides when caterpillars imbibed latex offered with a pipette. Thus, we conclude that monarch caterpillars have transformed the ancestral 'sabotage to avoid' strategy into a 'sabotage to consume' strategy, implying a novel behavioural adaptation to increase sequestration of cardenolides for defence.


Assuntos
Asclepias , Borboletas , Animais , Larva , Látex , Cardenolídeos/toxicidade
2.
Curr Biol ; 33(23): 5160-5168.e7, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37989309

RESUMO

Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.


Assuntos
Vaga-Lumes , Comportamento Predatório , Animais , Evolução Biológica
3.
J Insect Physiol ; 147: 104508, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011856

RESUMO

Many herbivorous insects not only cope with plant toxins but also sequester them as a defense against predators and parasitoids. Sequestration is a product of the evolutionary arms race between plants and herbivorous insects and has been hypothesized to incur physiological costs due to specific adaptations required. Contradictory evidence about these costs exists for insects sequestering only one class of toxin, but very little is known about the physiological implications for species sequestering structurally different classes of compounds. Spilostethus saxatilis is a milkweed bug belonging to the cardenolide-sequestering heteropteran subfamily Lygaeinae (Heteroptera: Lygaeidae) that has shifted to the colchicine-containing plant Colchicum autumnale, a resource of chemically unrelated alkaloids. Using feeding-assays on artificial diet and chemical analysis, we assessed whether S. saxatilis is still able to sequester cardenolides apart from colchicine and related metabolites (colchicoids), and tested the effect of (1) either a natural cardenolide concentration (using ouabain as a model compound) or a natural colchicine concentration, (2) an increased concentration of both toxins, and (3) seeds of either Asclepias syriaca (cardenolides) or C. autumnale (colchicoids) on a set of life-history traits. For comparison, we assessed the same life-history traits in the milkweed bug Oncopeltus fasciatus exposed to cardenolides only. Although cardenolides and colchicoids have different physiological targets (Na+/K+-ATPase vs tubulin) and thus require different resistance traits, chronic exposure and sequestration of both isolated toxins caused no physiological costs such as reduced growth, increased mortality, lower fertility, or shorter adult life span in S. saxatilis. Indeed, an increased performance was observed in O. fasciatus and an according trend was found in S. saxatilis when feeding on isolated ouabain and isolated colchicine, respectively. Positive effects were even more pronounced when insects were provided with natural toxic seeds (i.e. C. autumnale for S. saxatilis and A. syriaca for O. fasciatus), especially in O. fasciatus. Our findings suggest, that S. saxatilis can sequester two chemically unrelated classes of plant compounds at a cost-free level, and that colchicoids may even play a beneficial role in terms of fertility.


Assuntos
Alcaloides , Asclepias , Heterópteros , Animais , Heterópteros/fisiologia , Asclepias/química , Ouabaína , Colchicina
4.
Ecol Evol ; 13(4): e9971, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038513

RESUMO

In some aposematic species the conspicuousness of an individual's warning signal and the concentration of its chemical defense are positively correlated. Several mechanisms have been proposed to explain this phenomenon, including resource allocation trade-offs where the same limiting resource is needed to produce both the warning signal and chemical defense. Here, the large milkweed bug (Oncopeltus fasciatus: Heteroptera, Lygaeinae) was used to test whether allocation of antioxidants, that can impart color, trade against their availability to prevent self-damage caused by toxin sequestration. We investigated if (i) the sequestration of cardenolides is associated with costs in the form of changes in oxidative state; and (ii) oxidative state can affect the capacity of individuals to produce warning signals. We reared milkweed bugs on artificial diets with increasing quantities of cardenolides and examined how this affected signal quality (brightness and chroma) across different instars. We then related the expression of warning colors to the quantity of sequestered cardenolides and indicators of oxidative state-oxidative lipid damage (malondialdehyde), and two antioxidants: total superoxide dismutase and total glutathione. Bugs that sequestered more cardenolides had significantly lower levels of the antioxidant glutathione, and bugs with less total glutathione had less luminant orange warning signals and reduced chroma of their black patches compared to bugs with more glutathione. Bugs that sequestered more cardenolides also had reduced red-green chroma of their black patches that was unrelated to oxidative state. Our results give tentative support for a physiological cost of sequestration in milkweed bugs and a mechanistic link between antioxidant availability, sequestration, and warning signals.

5.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36945443

RESUMO

Toxic cardiotonic steroids (CTS) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). While most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly-resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies, and gene-editing in Drosophila, we find that the initial steps towards resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. In contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as predator of toxic firefly prey.

6.
Mol Ecol Resour ; 23(6): 1195-1210, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36941779

RESUMO

Although being famous for sequestering milkweed cardenolides, the mechanism of sequestration and where cardenolides are localized in caterpillars of the monarch butterfly (Danaus plexippus, Lepidoptera: Danaini) is still unknown. While monarchs tolerate cardenolides by a resistant Na+ /K+ -ATPase, it is unclear how closely related species such as the nonsequestering common crow butterfly (Euploea core, Lepidoptera: Danaini) cope with these toxins. Using novel atmospheric-pressure scanning microprobe matrix-assisted laser/desorption ionization mass spectrometry imaging, we compared the distribution of cardenolides in caterpillars of D. plexippus and E. core. Specifically, we tested at which physiological scale quantitative differences between both species are mediated and how cardenolides distribute across body tissues. Whereas D. plexippus sequestered most cardenolides from milkweed (Asclepias curassavica), no cardenolides were found in the tissues of E. core. Remarkably, quantitative differences already manifest in the gut lumen: while monarchs retain and accumulate cardenolides above plant concentrations, the toxins are degraded in the gut lumen of crows. We visualized cardenolide transport over the monarch midgut epithelium and identified integument cells as the final site of storage where defences might be perceived by predators. Our study provides molecular insight into cardenolide sequestration and highlights the great potential of mass spectrometry imaging for understanding the kinetics of multiple compounds including endogenous metabolites, plant toxins, or insecticides in insects.


Assuntos
Asclepias , Borboletas , Corvos , Animais , Larva , Corvos/metabolismo , Cardenolídeos/metabolismo , Asclepias/química , Asclepias/metabolismo
7.
Methods Enzymol ; 680: 275-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710014

RESUMO

The biosynthesis of cardiac glycosides, broadly classified as cardenolides and bufadienolides, has evolved repeatedly among flowering plants. Individual species can produce dozens or even hundreds of structurally distinct cardiac glycosides. Although all cardiac glycosides exhibit biological activity by inhibiting the function of the essential Na+/K+-ATPase in animal cells, they differ in their level of inhibitory activity. For within- and between-species comparisons of cardiac glycosides to address ecological and evolutionary questions, it is necessary to not only quantify their relative abundance, but also their effectiveness in inhibiting the activity of different animal Na+/K+-ATPases. Here we describe protocols for characterizing the amount and toxicity of cardenolides from plant samples and the degree of insect Na+/K+-ATPase tolerance to inhibition: (1) an HPLC-based assay to quantify the abundance of individual cardenolides in plant extracts, (2) an assay to quantify inhibition of Na+/K+-ATPase activity by plant extracts, and (3) extraction of insect Na+/K+-ATPases for inhibition assays.


Assuntos
Cardenolídeos , Glicosídeos Cardíacos , Animais , Cardenolídeos/farmacologia , Cromatografia Líquida de Alta Pressão , ATPase Trocadora de Sódio-Potássio/metabolismo , Glicosídeos Cardíacos/farmacologia , Extratos Vegetais/farmacologia
8.
Anal Chem ; 94(46): 15971-15979, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36347515

RESUMO

Spatial metabolomics describes the spatially resolved analysis of interconnected pathways, biochemical reactions, and transport processes of small molecules in the spatial context of tissues and cells. However, a broad range of metabolite classes (e.g., steroids) show low intrinsic ionization efficiencies in mass spectrometry imaging (MSI) experiments, thus restricting the spatial characterization of metabolic networks. Additionally, decomposing complex metabolite networks into chemical compound classes and molecular annotations remains a major bottleneck due to the absence of repository-scaled databases. Here, we describe a multimodal mass-spectrometry-based method combining computational metabolome mining tools and high-resolution on-tissue chemical derivatization (OTCD) MSI for the spatially resolved analysis of metabolic networks at the low micrometer scale. Applied to plant toxin sequestration in Danaus plexippus as a model system, we first utilized liquid chromatography (LC)-MS-based molecular networking in combination with artificial intelligence (AI)-driven chemical characterization to facilitate the structural elucidation and molecular identification of 32 different steroidal glycosides for the host-plant Asclepias curassavica. These comprehensive metabolite annotations guided the subsequent matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) analysis of cardiac-glycoside sequestration in D. plexippus. We developed a spatial-context-preserving OTCD protocol, which improved cardiac glycoside ion yields by at least 1 order of magnitude compared to results with untreated samples. To illustrate the potential of this method, we visualized previously inaccessible (sub)cellular distributions (2 and 5 µm pixel size) of steroidal glycosides in D. plexippus, thereby providing a novel insight into the sequestration of toxic metabolites and guiding future metabolomics research of other complex sample systems.


Assuntos
Inteligência Artificial , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metabolômica/métodos , Metaboloma , Plantas/metabolismo , Glicosídeos/metabolismo
9.
Front Physiol ; 13: 1001032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237530

RESUMO

Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.

10.
Proc Natl Acad Sci U S A ; 119(25): e2205073119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696564

RESUMO

Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.


Assuntos
Asclepias , Borboletas , Cardenolídeos , Heterópteros , Defesa das Plantas contra Herbivoria , Adenosina Trifosfatases/metabolismo , Animais , Asclepias/metabolismo , Borboletas/metabolismo , Cardenolídeos/química , Cardenolídeos/metabolismo , Cardenolídeos/toxicidade , Herbivoria , Heterópteros/metabolismo , Sementes/metabolismo
11.
Am Nat ; 199(6): E211-E228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580225

RESUMO

AbstractHost plant specialization across herbivorous insects varies dramatically, but while the molecular mechanisms of host plant adaptations are increasingly known, we often lack a comprehensive understanding of the selective forces that favor specialization. The milkweed bugs (Heteroptera: Lygaeinae) are ancestrally associated with plants of the Apocynaceae from which they commonly sequester cardiac glycosides for defense, facilitated by resistant Na+/K+-ATPases and adaptations for transport, storage, and discharge of toxins. Here, we show that three Lygaeinae species independently colonized four novel nonapocynaceous hosts that convergently produce cardiac glycosides. A fourth species shifted to a new source of toxins by tolerating and sequestering alkaloids from meadow saffron (Colchicum autumnale, Colchicaceae). Across three milkweed bug species tested, feeding on seeds containing toxins did not improve growth or speed of development and even impaired growth and development in two species, but sequestration mediated protection of milkweed bugs against two natural predators: lacewing larvae and passerine birds. We conclude that physiological preadaptations and convergent phytochemistry facilitated novel specialized host associations. Since toxic seeds did not improve growth but either impaired growth or, at most, had neutral effects, selection by predators on sequestration of defenses, rather than the exploitation of additional profitable dietary resources, can lead to obligatory specialized host associations in otherwise generalist insects.


Assuntos
Asclepias , Glicosídeos Cardíacos , Heterópteros , Animais , Herbivoria , Heterópteros/fisiologia , Insetos , Plantas
12.
Theor Appl Genet ; 135(11): 3917-3946, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35294574

RESUMO

In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.


Assuntos
Brassica napus , Animais , Brassica napus/genética , Genômica , Insetos
13.
Annu Rev Entomol ; 67: 163-180, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995091

RESUMO

Plant defense compounds play a key role in the evolution of insect-plant associations by selecting for behavioral, morphological, and physiological insect adaptations. Sequestration, the ability of herbivorous insects to accumulate plant defense compounds to gain a fitness advantage, represents a complex syndrome of adaptations that has evolved in all major lineages of herbivorous insects and involves various classes of plant defense compounds. In this article, we review progress in understanding how insects selectively accumulate plant defense metabolites and how the evolution of specific resistance mechanisms to these defense compounds enables sequestration. These mechanistic considerations are further integrated into the concept of insect-plant coevolution. Comparative genome and transcriptome analyses, combined with approaches based on analytical chemistry that are centered in phylogenetic frameworks, will help to reveal adaptations underlying the sequestration syndrome, which is essential to understanding the influence of sequestration on insect-plant coevolution.


Assuntos
Insetos , Plantas , Adaptação Fisiológica , Animais , Herbivoria , Insetos/fisiologia , Filogenia , Plantas/metabolismo
14.
Insects ; 12(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34442254

RESUMO

Natural history collections provide an invaluable basis for systematics, ecology, and conservation. Besides being an important source of DNA, museum specimens may also contain a plethora of natural products. Especially, dried insect collections represent a global repository with billions of inventoried vouchers. Due to their vast diversity, insects possess a great variety of defensive compounds, which they either produce autogenously or derive from the environment. Here, we present a case study on fireflies (Coleoptera: Lampyridae), which produce bufadienolides as a defense against predators. These toxins belong to the cardiotonic steroids, which are used for the treatment of cardiac diseases and specifically inhibit the animal enzyme Na+/K+-ATPase. Bufadienolides have been reported from only seven out of approximately 2000 described firefly species. Using a non-destructive approach, we screened 72 dry coleopteran specimens for bufadienolides using HPLC-DAD and HPLC-MS. We found bufadienolides including five novel compounds in 21 species of the subfamily Lampyrinae. The absence of bufadienolides in the phylogenetically related net-winged beetles (Lycidae) and the lampyrid subfamilies Luciolinae and Lamprohizinae indicates a phylogenetic pattern of bufadienolide synthesis. Our results emphasize the value of natural history collections as an archive of chemical information for ecological and evolutionary basic research and as an untapped source for novel bioactive compounds.

15.
Anal Bioanal Chem ; 413(8): 2125-2134, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33544161

RESUMO

Mass spectrometry-based imaging (MSI) has emerged as a promising method for spatial metabolomics in plant science. Several ionisation techniques have shown great potential for the spatially resolved analysis of metabolites in plant tissue. However, limitations in technology and methodology limited the molecular information for irregular 3D surfaces with resolutions on the micrometre scale. Here, we used atmospheric-pressure 3D-surface matrix-assisted laser desorption/ionisation mass spectrometry imaging (3D-surface MALDI MSI) to investigate plant chemical defence at the topographic molecular level for the model system Asclepias curassavica. Upon mechanical damage (simulating herbivore attacks) of native A. curassavica leaves, the surface of the leaves varies up to 700 µm, and cardiac glycosides (cardenolides) and other defence metabolites were exclusively detected in damaged leaf tissue but not in different regions of the same leaf. Our results indicated an increased latex flow rate towards the point of damage leading to an accumulation of defence substances in the affected area. While the concentration of cardiac glycosides showed no differences between 10 and 300 min after wounding, cardiac glycosides decreased after 24 h. The employed autofocusing AP-SMALDI MSI system provides a significant technological advancement for the visualisation of individual molecule species on irregular 3D surfaces such as native plant leaves. Our study demonstrates the enormous potential of this method in the field of plant science including primary metabolism and molecular mechanisms of plant responses to abiotic and biotic stress and symbiotic relationships.


Assuntos
Asclepias/química , Glicosídeos Cardíacos/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Asclepias/fisiologia , Herbivoria , Folhas de Planta/fisiologia , Estresse Fisiológico
16.
Ecol Evol ; 11(24): 18042-18054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003656

RESUMO

Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non-sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant-derived cardenolides. Although being potent inhibitors of the ubiquitous animal enzyme Na+/K+-ATPase, milkweed bugs can tolerate cardenolides by means of resistant Na+/K+-ATPases. Both adaptations, resistance and sequestration, are ancestral traits of the Lygaeinae. Using four milkweed bug species (Heteroptera: Lygaeidae: Lygaeinae) and the related European firebug (Heteroptera: Pyrrhocoridae: Pyrrhocoris apterus) showing different combinations of the traits "cardenolide resistance" and "cardenolide sequestration," we tested how the two traits affect larval growth upon exposure to dietary cardenolides in an artificial diet system. While cardenolides impaired the growth of P. apterus nymphs neither possessing a resistant Na+/K+-ATPase nor sequestering cardenolides, growth was not affected in the non-sequestering milkweed bug Arocatus longiceps, which possesses a resistant Na+/K+-ATPase. Remarkably, cardenolides increased growth in the sequestering dietary specialists Caenocoris nerii and Oncopeltus fasciatus but not in the sequestering dietary generalist Spilostethus pandurus, which all possess a resistant Na+/K+-ATPase. We furthermore assessed the effect of dietary cardenolides on additional life history parameters, including developmental speed, longevity of adults, and reproductive success in O. fasciatus. Unexpectedly, nymphs under cardenolide exposure developed substantially faster and lived longer as adults. However, fecundity of adults was reduced when maintained on cardenolide-containing diet for their entire lifetime but not when adults were transferred to non-toxic sunflower seeds. We speculate that the resistant Na+/K+-ATPase of milkweed bugs is selected for working optimally in a "toxic environment," that is, when sequestered cardenolides are stored in the body.

17.
Insects ; 11(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752003

RESUMO

Predators and parasitoids regulate insect populations and select defense mechanisms such as the sequestration of plant toxins. Sequestration is common among herbivorous insects, yet how the structural variation of plant toxins affects defenses against predators remains largely unknown. The palearctic milkweed bug Lygaeus equestris (Heteroptera: Lygaeinae) was recently shown to sequester cardenolides from Adonis vernalis (Ranunculaceae), while its relative Horvathiolus superbus also obtains cardenolides but from Digitalis purpurea (Plantaginaceae). Remarkably, toxin sequestration protects both species against insectivorous birds, but only H. superbus gains protection against predatory lacewing larvae. Here, we used a full factorial design to test whether this difference was mediated by the differences in plant chemistry or by the insect species. We raised both species of milkweed bugs on seeds from both species of host plants and carried out predation assays using the larvae of the lacewing Chrysoperla carnea. In addition, we analyzed the toxins sequestered by the bugs via liquid chromatography (HPLC). We found that both insect species gained protection by sequestering cardenolides from D. purpurea but not from A. vernalis. Since the total amount of toxins stored was not different between the plant species in H. superbus and even lower in L. equestris from D. purpurea compared to A. vernalis, the effect is most likely mediated by structural differences of the sequestered toxins. Our findings indicate that predator-prey interactions are highly context-specific and that the host plant choice can affect the levels of protection to various predator types based on structural differences within the same class of chemical compounds.

18.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32252891

RESUMO

Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.


Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.


Assuntos
Erysimum/química , Erysimum/genética , Genoma de Planta , Filogenia , Compostos Fitoquímicos/análise , Plantas Tóxicas/genética , Erysimum/classificação , Evolução Molecular , Geografia , Fenótipo , Plantas Tóxicas/química , Plantas Tóxicas/classificação
19.
Sci Rep ; 10(1): 3092, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080314

RESUMO

The composition of defensive secretion produced by metathoracic scent glands was analysed in males and females of the milkweed bug Lygaeus equestris (Heteroptera) using gas chromatography with mass spectrometric detection (GC-MS). The bugs were raised either on cardenolide-containing Adonis vernalis or on control sunflower seeds in order to determine whether the possibility to sequester cardenolides from their host plants would affect the composition of defensive scent-gland secretion. Profiles of the composition of defensive secretions of males and females raised on sunflower were closely similar, with predominant presence of (E)-2-octenal, (E)-2-octen-1-ol, decanal and 3-octen-1-ol acetate. The secretion of bugs raised on A. vernalis was more sexually dimorphic, and some chemicals e.g. (E,E)-2,4-hexadienyl acetate and 2-phenylethyl acetate were dominant in males, but absent in females. Compared to bugs from sunflower, the scent-gland secretion of bugs raised on A. vernalis was characterized by lower overall intensity of the peaks obtained for detected chemicals and by absence of some chemicals that have supposedly antipredatory function ((E)-2-hexenal, (E)-4-oxo-hex-2-enal, 2,4-octadienal). The results suggest that there might be a trade-off between the sequestration of defensive chemicals from host plants and their synthesis in metathoracic scent-glands.


Assuntos
Adonis/química , Heterópteros/química , Defesa das Plantas contra Herbivoria , Acetatos/análise , Aldeídos/análise , Animais , Cromatografia Gasosa , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Helianthus/química , Masculino , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Feromônios/análise , Glândulas Odoríferas/química , Caracteres Sexuais , Fatores Sexuais , Olfato
20.
Elife ; 82019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31453806

RESUMO

Predicting how species will respond to selection pressures requires understanding the factors that constrain their evolution. We use genome engineering of Drosophila to investigate constraints on the repeated evolution of unrelated herbivorous insects to toxic cardiac glycosides, which primarily occurs via a small subset of possible functionally-relevant substitutions to Na+,K+-ATPase. Surprisingly, we find that frequently observed adaptive substitutions at two sites, 111 and 122, are lethal when homozygous and adult heterozygotes exhibit dominant neural dysfunction. We identify a phylogenetically correlated substitution, A119S, that partially ameliorates the deleterious effects of substitutions at 111 and 122. Despite contributing little to cardiac glycoside-insensitivity in vitro, A119S, like substitutions at 111 and 122, substantially increases adult survivorship upon cardiac glycoside exposure. Our results demonstrate the importance of epistasis in constraining adaptive paths. Moreover, by revealing distinct effects of substitutions in vitro and in vivo, our results underscore the importance of evaluating the fitness of adaptive substitutions and their interactions in whole organisms.


Assuntos
Adaptação Biológica , Glicosídeos Cardíacos/farmacologia , Drosophila/efeitos dos fármacos , Drosophila/genética , Epistasia Genética , Resistência a Inseticidas , Inseticidas/farmacologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...